On Riemann-Stieltjes integral boundary value problems of Caputo-Riemann-Liouville type fractional integro-differential equations
نویسندگان
چکیده
منابع مشابه
Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
* Correspondence: [email protected] Department of Mathematics, Faculty of Science, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia Full list of author information is available at the end of the article Abstract This article investigates a boundary value problem of Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary condi...
متن کاملOn q–fractional derivatives of Riemann–Liouville and Caputo type
Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .
متن کاملPeriodic boundary value problems for Riemann–Liouville sequential fractional differential equations
In this paper, we shall discuss the properties of the well-known Mittag–Leffler function, and consider the existence of solution of the periodic boundary value problem for a fractional differential equation involving a Riemann–Liouville sequential fractional derivative by means of the method of upper and lower solutions and Schauder fixed point theorem.
متن کاملExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملIntegral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2020
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil2008723a